On the Pierce-Birkhoff Conjecture for Smooth Affine Surfaces over Real Closed Fields
نویسنده
چکیده
We will prove that the Pierce-Birkhoff Conjecture holds for non-singular two-dimensional affine real algebraic varieties over real closed fields, i.e., if W is such a variety, then every piecewise polynomial function on W can be written as suprema of infima of polynomial functions on W . More precisely, we will give a proof of the so-called Connectedness Conjecture for the coordinate rings of such varieties, which implies the Pierce-Birkhoff Conjecture.
منابع مشابه
A Connectedness Theorem for Real Spectra of Polynomial Rings
Let R be a real closed field. The Pierce-Birkhoff conjecture says that any piecewise polynomial function f on Rn can be obtained from the polynomial ring R[x1, . . . , xn] by iterating the operations of maximum and minimum. The purpose of this paper is twofold. First, we state a new conjecture, called the Connectedness conjecture, which asserts the existence of connected sets in the real spectr...
متن کاملOn Connectedness of Sets in the Real Spectra of Polynomial Rings
Let R be a real closed field. The Pierce-Birkhoff conjecture says that any piecewise polynomial function f on Rn can be obtained from the polynomial ring R[x1, . . . , xn] by iterating the operations of maximum and minimum. The purpose of this paper is threefold. First, we state a new conjecture, called the Connectedness conjecture, which asserts, for every pair of points α, β ∈ Sper R[x1, . . ...
متن کاملThe Profinite Grothendieck Conjecture for Closed Hyperbolic Curves over Number Fields
In [Tama], a proof of the Grothendieck Conjecture (reviewed below) was given for smooth affine hyperbolic curves over finite fields (and over number fields). The purpose of this paper is to show how one can derive the Grothendieck Conjecture for arbitrary (i.e., not necessarily affine) smooth hyperbolic curves over number fields from the results of [Tama] for affine hyperbolic curves over finit...
متن کاملApproximate Roots of a Valuation and the Pierce–birkhoff Conjecture
In this paper, we construct an object, called a system of approximate roots of a valuation, centered in a regular local ring, which describes the fine structure of the valuation (namely, its valuation ideals and the graded algebra). We apply this construction to valuations associated to a point of the real spectrum of a regular local ring A. We give two versions of the construction: the first, ...
متن کاملOn the Pierce-Birkhoff conjecture in three variables
The so called ”Pierce-Birkhoff Conjecture” asserts that a continuous function h on Rn piecewise polynomial on a finite number of pieces may be written as finitely many Sup and Inf of polynomials. Up to now a positive answer is known for n ≤ 2. In this paper we show that for n = 3 such an Inf-Sup description may be obtained outside an arbitrarily small neighborhood of a finite fixed set of point...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009